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Recently a unified theory for the near-adiabatic magnetization dynamics in collinear and noncollinear sys-
tems has been presented �D. Steiauf et al., Phys. Rev. B 78, 020410�R� �2008��. There, an equation of motion
for atomic magnetic moments is derived which includes anisotropic and nonlocal atomic damping matrices. In
the present paper the connection between damping for atomic and unit-cell magnetic moments in collinear
systems is investigated. Using the unified theory, numerical values for the local and nonlocal atomic contri-
butions to the unit-cell damping in collinear hcp-Co, bcc-Fe, and a Co layer are calculated. In addition, the
damping matrix for the whole unit cell is calculated by a formerly established method, the torque-operator
method. The results of the unified theory and of the torque-operator method which are based on different
approximations agree very well.
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I. INTRODUCTION

In the last few years there has been extensive research
activity, both experimental and theoretical, on the ultrafast
magnetization dynamics in magnetically ordered materials.
This research is important from a technological point of
view, as it gives deeper insight into ultrafast switching pro-
cesses of magnetic devices. From the viewpoint of funda-
mental research it is very interesting to get a better under-
standing of the fundamental equation of motion which
underlies dissipative magnetization dynamics and to deter-
mine the character of damping parameters and the influence
of material properties on these.1,2

It is common to subdivide magnetization dynamics into
phenomena which appear on two different time scales.3 In
the near-adiabatic regime of more than several picoseconds,
it is assumed that the electronic system is always close to the
ground state with respect to the momentary magnetic con-
figuration. Examples are the dynamics of domain walls4 or
field- and current-driven magnetization dynamics.4,5 On the
femtosecond time scale, for example, in ultrafast demagneti-
zation experiments,6 strong excitations from these ground
states have to be taken into account.

On a phenomenological level the Gilbert equation7 �Eq.
�1�� is the generally used equation of motion for the magne-
tization M�r , t�,

dM

dt
= − ��M � Heff� +

1

M
M � �

dM

dt
, �1�

with the gyromagnetic ratio � and the Gilbert damping scalar
�. It is the simplest conceivable equation to describe a
damped precessional motion as it consists of a term �first�
causing precession around an effective field Heff and a damp-
ing term �second� which leads to relaxation of the magneti-
zation toward the equilibrium parallel to the effective field.
Recently there have been many attempts to find a more gen-
eral equation of motion by the ab initio electron theory.8–12

The breathing Fermi-surface model13 in combination with
the ab initio electron theory is a successful way to describe
damping in the near-adiabatic time regime.8–13 It has been

shown12 that the breathing Fermi-surface model corresponds
to intraband transitions in the torque-correlation model14

which allows to calculate damping parameters for collinear
�all atomic magnetic moments are parallel� magnetization in
high-symmetry directions. The contribution of these intra-
band transitions, and so the damping in the breathing Fermi-
surface model, depends on the temperature T like 1 /T and so
dominates in the low-temperature regime.

In the breathing Fermi-surface model, the dissipation is
described by a relaxation time ansatz for the occupation
numbers of single electron states. All electron-scattering pro-
cesses are represented by a simple relaxation time � for the
occupation numbers; therefore the model does not investi-
gate the influence of specific scattering mechanisms on
damping parameters but of the electronic structure and the
magnetic configuration.

Within the model it is possible to derive an equation of
motion on an atomic scale which is of the same type as the
Gilbert equation, which means that it consists of a precession
and a relaxation term. In systems with collinear magnetiza-
tion such an equation for the direction of the unit-cell mag-
netic moment has been published.3,8,9,13 In this Gilbert-type
equation the scalar Gilbert damping parameter � is replaced
by a damping matrix A�e� which depends on the direction e
of the magnetization. In Refs. 8 and 9 a strong dependence of
the damping matrix on e has been shown for various sys-
tems, even vanishing damping occurs for specific orienta-
tions e under certain circumstances. An attempt to generalize
the breathing Fermi-surface model to noncollinear magnetic
configurations delivered an equation of motion with a non-
local magnetization dependent damping matrix10

AR,R���eR���, where R, R�, and R� denote the positions of
the atoms and �eR�� is the set of the orientations of the
atomic magnetic moments MR=MReR at all sites R. Quite
recently a theory was able to unify damping in collinear and
noncollinear systems and to tackle both situations on equal
footing.11 This has been done by a combination of the breath-
ing Fermi-surface model with a variant of a magnetic force
theorem15 of the ab initio electron theory.
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II. THEORETICAL RELATIONS

The unified theory1,2,11 derives an equation of motion for
the directions eR,

deR

dt
= − �eR � Heff,R��eR��� + eR � �

R�

AR,R���eR��� ·
deR�

dt
,

�2�

where Heff,R��eR��� is the effective field at the atomic site R,
which depends on the whole configuration �eR�� of the
atomic magnetic moments. In general, the effective field is
composed of the external field, the exchange field, the aniso-
tropy field, and the dipolar field. R� runs over all atoms and
�=−2�B /� is the gyromagnetic ratio. The damping matrix
AR,R���eR��� is generally nonlocal in two respects. First, it
relates the derivative deR /dt at site R to the derivatives
deR� /dt at all other sites, and second, it depends not only on
the orientation eR of the magnetic moment at site R but on
the magnetic configuration �eR�� of the whole system,

AR,R���eR��� = −
��

MR
�

i

� f i

��i

��i
HF

�eR

��i
HF

�eR�
. �3�

The damping matrix includes a factor � which is a relaxation
time for the occupation numbers of single electron states,
introduced by the breathing Fermi-surface model, and a fac-
tor determined by derivatives of single electron energies
��i

HF /�eR which in turn depend on �eR��. The superscript
“HF” implies that the derivatives are calculated by a variant
of the magnetic force theorem15 which uses the Harris-
Foulkes functional16 and which is described in Refs. 1 and
11. The index i runs over each single electron state with the
occupation number f i.

As described in Refs. 1 and 11 the unified theory is valid
in the near-adiabatic regime. In a total adiabatic situation the
electronic system is always in its ground state with respect to
the momentary magnetic configuration �eR��. To describe the
slightly nonadiabatic situation the theory introduces nonadia-
batic occupation numbers of single electron states but keeps
the adiabatic single electron energies and wave functions.
The nonadiabatic occupation numbers relax toward the mo-
mentary Fermi-Dirac occupation numbers f i with a relax-
ation time � which is small compared to the characteristic
time scale of the dynamics of the magnetic moments MR.
The adiabatic single electron wave functions and their ener-
gies �i depend on the directions eR of all magnetic moments.
This is the origin of the nonlocal damping matrices AR,R� in
the unified theory. In real materials the use of this property is
only meaningful for length scales on which a coherent wave
function exists. So it is only reasonable to calculate damping
matrices AR,R� for pairs of magnetic moments MR and MR�
with a distance �R−R�� smaller than the electron mean-free
path.

In the following we consider the case of periodic systems.
Then the summation in Eq. �2� runs over all atoms R� in the
unit cell.

Equations �2� and �3� represent the equation of motion
and the damping matrix for a general arbitrary configuration
of the directions �eR�� of the atomic magnetic moments. In

the case of a collinear configuration where all atomic mag-
netic moments MR have the same direction eR=e and the
same magnetization dynamics, which means deR /dt=de /dt,
the equation of motion and the damping matrix simplify to

de

dt
= − �e � Heff�e� + e � A�e� ·

de

dt
�4�

and

A�e� = −
��

M
�

i

� f i

��i

��i
HF

�e

��i
HF

�e
, �5�

with the magnitude M of the unit-cell magnetic moment.
Equation �4� is the equation of motion for the direction e of
the unit-cell magnetic moment which in a collinear system is
the same as the direction of the atomic magnetic moments.
For this case, in our theory the single electron energies �i
depend on the orientation e via spin-orbit coupling which
leads to an anisotropic damping matrix A�e�.8,9 In Eq. �5�
one can see that A�e� is a symmetric 3�3 matrix. As e is a
unit vector, the component of ��i /�e parallel to e is zero and
the eigenvalue of A�e� corresponding to the eigenvector par-
allel to e is also equal to zero. Therefore, the damping matrix
has two nonzero eigenvalues Ap�p=1,2�, which correspond
to two eigenvectors. Each of the two eigenvalues Ap de-
scribes the momentary damping which would occur if the
momentary de /dt in Eq. �4� was parallel to the respective
eigenvector.

From Eq. �2�, for collinear configuration and dynamics,
and Eq. �4� one can derive a relation between the local damp-
ing matrix A�e� for the unit-cell magnetic moment and the
damping matrices AR,R���eR�=e�� for the atomic magnetic
moments,

A�e� =
1

N
�

R,R�

AR,R��e� , �6�

where R ,R� run over all atoms in the unit cell and N is the
number of these. We thereby denote the matrices AR,R as
local contributions and the matrices AR,R� with R�R� as
nonlocal contributions to the damping matrix A�e� of the
unit-cell magnetic moment.

The former papers on the ab initio breathing Fermi-
surface model �Refs. 1, 3, and 8–11� considered mainly col-
linear configurations and discussed the dependence of the
damping matrix A�e� on the direction e. Thereby the torque-
operator method8,9,17 was used to calculate the derivatives
��i /�e. In many technologically important situations, how-
ever, there are noncollinear configurations such as domain
walls or vortices for which the nonlocality of AR,R���eR���
may become essential. The focus of future calculations there-
fore will be on the discussion of this nonlocality. In the
present paper a first step in this direction is made. To do this,
we still consider a situation with collinear magnetic mo-
ments, but we consider periodic systems with two atoms in
the unit cell so that the damping matrix A�e� of the unit-cell
magnetic moment is composed of the damping matrices
AR,R� of the two atoms in the unit cell, i.e., of local �R
=R�� and nonlocal �R�R�� contributions. It should be noted
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that the calculation of the single contributions AR,R� to the
unit-cell damping matrix A is not possible with the torque-
operator method but only within the unified theory described
above, and this is a big achievement of the unified theory.

Another objective of the present paper is to compare the
results for the unit-cell damping matrix as obtained from the
derivatives ��i /�e, which are on the one hand determined by
the torque-operator method and on the other hand by the
magnetic Harris-Foulkes approach ���i

HF /�e�. Because both
calculational methods involve approximations, it is interest-
ing to see how well the corresponding results agree.

III. NUMERICAL RESULTS

In all calculations the derivatives of the energies �i are
determined by the ab initio density-functional electron
theory �DFT� in local-spin-density approximation, using the
tight-binding linear-muffin-tin-orbital method in the atomic-
sphere approximation18 in which spin-orbit coupling19 has
been implemented. Lagrange constraining fields20 are neces-
sary to gain results according to the recent unified theory. For
technical reasons, all calculations are performed without the
orbital polarization term,21 whereas in Ref. 9 this term has
been used.22

The effective field appearing in Eq. �4� is in our calcula-
tions given by the anisotropy field caused by spin-orbit cou-
pling and the interatomic exchange field. The external field is
set to zero for technical reasons and to exclude external ef-
fects. No dipolar effects are included.

The derivatives ��i /�e are calculated for different pre-
scribed directions of the magnetization. If the prescribed di-
rection is not parallel to an equilibrium direction, the aniso-
tropy field is present and the direction of the magnetization
must be enforced by a constraining method.20 In the torque-
operator method, the direction of the magnetization is con-
strained by prescribing the direction of the spin-quantization
axes. One self-consistent DFT calculation for each direction
is necessary to calculate the derivatives ��i /�e from the ex-
pectation value of the torque operator as described in Ref. 9.
In the unified theory, the direction of the magnetization is
enforced by Lagrange constraining fields. Both self-
consistent and one-shot Harris-Foulkes calculations are nec-
essary to calculate the derivatives of the single electron en-
ergies �i numerically.

The investigated bulk materials are bcc-Fe and hcp-Co. A
monatomic Co layer is realized by a supercell containing one
layer of Co atoms and in addition empty atomic spheres. The
numerical values are plotted in units of M�R� /�� ·�B

2 /V�2 as
� is a phenomenological parameter in the breathing Fermi-
surface model which cannot be calculated ab initio. Please
note that M�R� represents the value of the magnetic moment
M of the unit cell for the plots of the unit-cell damping
matrix, and for the curves of the atomic damping matrices it
represents the value of the atomic magnetic moment MR. V
represents the unit-cell volume.

A. hcp-Co

All calculations for hcp-Co were performed in the primi-
tive two-atom unit cell. In Fig. 1 the eigenvalues of A�e� are

plotted for different directions e of the magnetization calcu-
lated by the unified theory and the torque-operator method.
Additionally the right-hand side of relation �6� is displayed.
The eigenvalues of the single matrices AR,R��e� are pre-
sented in Fig. 2.

B. bcc-Fe

To compare results for the unit-cell damping matrix A�e�
of the unified theory with values obtained by the torque-
operator method, eigenvalues of A�e� are calculated for dif-
ferent directions of e in the primitive one-atom unit cell.
These are shown in Fig. 3.

Calculations in a two-atom unit cell are performed to ob-
tain the eigenvalues of the atomic moment damping matrices
AR,R��e� within the unified theory. These are presented in
Fig. 4 �lower curves�. To test our results for these atomic
damping matrices AR,R��e�, also the eigenvalues of the unit-

FIG. 1. hcp-Co: eigenvalues Ap of unit-cell damping matrix
A�e� calculated with the unified theory �symbol �� and the torque-
operator method �symbol ��. Right hand side of relation �6� �sym-
bol ��. The two eigenvalues are given by the full and dashed lines,
respectively.

FIG. 2. hcp-Co: eigenvalues Ap of the atomic damping matrices:
AR,R�=AR�,R �symbol ��; AR,R=AR�,R� �symbol ��. The two ei-
genvalues are given by the full and dashed lines, respectively.
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cell damping matrix A�e� of the two-atom unit cell have
been calculated within the unified theory and they are plotted
together with the right-hand side of relation �6� in Fig. 4
�upper curves�. The curves with the crosses ��� in Fig. 3 on
the one hand and the upper curves with the crosses ��� in
Fig. 4 on the other hand should be identical. They slightly
differ in absolute value and shape because both ab initio
calculations are not converged with respect to the density of
k points in the sampling of the Brillouin-zone integration due
to the computational effort. Even when using about the same
density of k points for the two calculations the results may
differ because the k-point meshes for the one- and two-atom
unit cells are not equivalent.

C. Co layer

The calculations for the hexagonal monatomic Co layer
are performed in the supercell formalism. The supercell con-
sists of a Co atom and five empty atomic spheres stacked
above, so that an hcp stacking appears for the periodically
repeated supercell. The periodic structure represents hexago-
nal monatomic Co layers separated by vacuum. Here, also
the eigenvalues of the unit-cell damping matrix A�e� are cal-
culated by the unified theory and the torque-operator method.
Additionally, the eigenvalues of the atomic damping matrix
ACo,Co�e� are calculated for different e, which is again only
possible in the unified theory. The results are plotted in Fig.
5.

IV. DISCUSSION AND CONCLUSIONS

In all investigated materials, the unit-cell damping matrix
is calculated by the unified theory and the torque-operator
method, and very good agreement between both methods is
achieved. This agreement in collinear systems, where a com-
parison is possible, is an important step forward to establish
the unified theory, which tackles both collinear and noncol-
linear systems on equal footing.

The atomic damping matrices AR,R� occurring in the
atomic equation of motion �2� are calculated in collinear sys-
tems. For hcp-Co the primitive unit cell contains two basis
atoms and therefore it is possible to calculate both the unit-
cell damping matrix and the atomic damping matrices for the
primitive unit cell. For bcc-Fe the primitive unit cell contains
only one atom and therefore a nonprimitive supercell has to
be used for which again both the unit-cell damping matrix
and atomic damping matrices can be calculated. It is inter-
esting that in hcp-Co AR,R��R and AR,R have different signs
�see Fig. 2�, whereas in bcc-Fe both matrices are identical
�see Fig. 4, lower curve�. One can show that this is a conse-
quence of the lattice symmetry in these materials. In bcc-Fe
the relation ��i /�eR=��i /�eR��R for the derivatives of single

FIG. 3. bcc-Fe: eigenvalues Ap of unit-cell damping matrix A�e�
calculated with the unified theory �symbol �� and the torque-
operator method �symbol ��. The two eigenvalues are given by the
full and dashed lines, respectively.

FIG. 4. bcc-Fe: eigenvalues Ap of the two-atom unit-cell damp-
ing matrix A�e� �symbol ��. Eigenvalues Ap of the atomic damping
matrices: AR,R�=AR�,R=AR�,R�=AR,R �symbol ��. Right hand side
of relation �6� �symbol ��. The two eigenvalues are given by the
full and dashed lines, respectively. As the magnetic moment M of
the unit cell is twice the atomic magnetic moment MR, an additional
factor of 2 arises so that Eq. �6� is fulfilled.

FIG. 5. Co layer: eigenvalues Ap of unit-cell damping matrix
A�e� calculated with the unified theory �symbol �� and the torque-
operator method �symbol ��. Eigenvalues Ap of atomic damping
matrix ACo,Co �symbol ��. The two eigenvalues are given by the
full and dashed lines, respectively.
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electron energies �i holds if the single electron states are
Bloch states, as they are in our calculations where the label i
stands for a band index and a wave vector k. In hcp-Co this
relation is not valid. The difference between AR,R��R and
AR,R has the consequence that deR /dt and deR� /dt deliver
different contributions to the total damping at the atomic site
R, even in a collinear configuration and dynamics. However,
this does not lead to an atomic damping matrix which is
different at the two basis atoms of Co, as the total damping
matrices at site R and site R� are equal �AR,R+AR,R�
=AR�,R�+AR�,R�. This is reasonable because the two basis
atoms are crystallographically equivalent. Nevertheless, if
we consider a noncollinear dynamics in a momentary collin-
ear configuration, as it occurs, e.g., during the excitation of a
spin wave, then different time derivatives �deR /dt
�deR� /dt� of the directions of the atomic magnetic moments
lead to different total damping at site R and site R�.

Our numerical results fulfill theoretical relation �6� when
comparing the right-hand side consisting of the damping ma-
trices AR,R��e� for the atomic moments with the left-hand
side which is the unit-cell damping matrix A�e�. This is
shown for hcp-Co in Fig. 1 and bcc-Fe in Fig. 4 �upper
curves�.

The unit cell of the Co-layer calculations contains one
Co-atom and five empty atomic spheres which represent

vacuum separating the Co layers. Figure 5 shows that the
atomic damping matrix ACo,Co�e� is nearly equal to the whole
unit-cell damping matrix. So the empty atomic spheres,
which mathematically could in principal deliver further
terms on the right-hand side of Eq. �6� �because the tails of
the magnetization density localized in the Co layer leak to
some extent into the empty atomic spheres�, have nearly no
contribution to damping.

To conclude, we tackled unit-cell damping in magneti-
cally collinear systems by two theoretical approaches which
are based on different approximations, and we found very
good agreement. Furthermore, we calculated the local and
nonlocal contributions of atomic damping matrices to the
unit-cell damping matrix for supercells containing two at-
oms. This was only possible with one of the two theoretical
approaches, the so-called unified method. After this success-
ful treatment of collinear systems by the unified theory the
next step will be to calculate the nonlocal damping matrices
for noncollinear magnetic configurations.
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